UpTrain Config
checks = [ { 'type': uptrain.Anomaly.DATA_DRIFT, 'reference_dataset': orig_training_file, 'measurable_args': { 'type': uptrain.MeasurableType.INPUT_FEATURE, 'feature_name': 'feat_0' }, }, { 'type': uptrain.Anomaly.CONCEPT_DRIFT, 'algorithm': uptrain.DataDriftAlgo.DDM } ]# Define the training pipeline to annotate collected edge cases and retrain the model automatically training_args = { "annotation_method": { "method": uptrain.AnnotationMethod.MASTER_FILE, "args": annotation_args }, "training_func": train_model_torch, "orig_training_file": orig_training_file, }# Define the evaluation pipeline to compare the retrained and the original model evaluation_args = { "inference_func": get_accuracy_torch, "golden_testing_dataset": golden_testing_file, }logging_args = { 'st_logging': True, 'log_folder': 'uptrain_logs', 'dashboard_port': 50001, }
Last updated
Was this helpful?